Дон Рукер: Без создания открытых API искусственный интеллект «провалится» в здравоохранении
15 декабря, 2018 Posted by Александр Соколов Цифровая интенсивность в медицине 0 thoughts on “Дон Рукер: Без создания открытых API искусственный интеллект «провалится» в здравоохранении”Успех искусственного интеллекта в здравоохранении зависит от повсеместного внедрения открытых API, говорит национальный координатор США Дон Рукер (ONC National Coordinator Dr. Don Rucker).
Инструменты искусственного интеллекта будут играть все более важную роль в индустрия здравоохранения. Плательщики, поставщики и разработчики ИТ для здравоохранения связывают свои надежды на снижение затрат и улучшение результатов за счет способности ИИ распознавать тонкие закономерности в огромных объемах данных, оптимизировать рабочие процессы или предлагать действия, которые могут привести к лучшим результатам в обследовании и лечении пациентов.
Для Управления национального координатора (ONC) США, которое несет ответственность за внедрения информационных технологий в области здравоохранения, искусственный интеллект является одновременно перспективным и потенциально проблематичным.
Машинное обучение, безусловно, предлагает беспрецедентные возможности для превращения больших массивов данных в практические знания, говорит национальный координатор Дон Рукер.
Однако заинтересованные стороны могут столкнуться с трудностями в быстром развитии технической базы, необходимой для поддержки ИИ, особенно открытых интерфейсов программирования приложений (API-интерфейсов), которые позволяют организациям безопасно и стандартизировано использовать алгоритмы, требующие данных.
“На данный момент мы наблюдаем очевидную шумиху вокруг ИИ. Однако тоже самое было и во время первой волны машинного обучения несколько десятилетий назад”, — сказал Рукер журналистам портала HealthITAnalytics.com на ежегодной встрече ONC 2018 в Вашингтоне, округ Колумбия.
Рукер врач скорой помощи, специалист в области ИТ и опытный руководитель здравоохранения, заинтересовался искусственном интеллектом, еще когда учился в аспирантуре. Он наблюдал подъем интереса к ИИ и затем спад, но на этот раз он верит, что интерес к ИИ, скорее всего останется. “Ажиотаж очень, очень похож на то, что было в прошлом”, — отметил он. “Вы, вероятно, могли бы взять любые 20 статей об ИИ с начала 1980-х годов, изменить фактические даты, возможно, поменять несколько слов, и эти статьи были бы почти идентичны тому, что публикуется сегодня”.
“Разница, однако, заключается в вычислительной мощности, которую мы имеем сейчас. Сейчас существует реальная перспектива для ИИ , которой раньше не было. Мир движется к выделенным чипам, которые имеют намного больше мощности, чем раньше. В наши дни гораздо более ясно, как ИИ может помочь в решении реальных проблем”.
Тем не менее, для скачка от теории к реальности потребуется нечто большее, чем просто рвение поклонников ИИ. Необходимы согласованные усилия всех заинтересованных сторон для создания больших банков данных, которые позволят организациям обмениваться критически важными знаниями, разрабатывать новые алгоритмы и проверять модели машинного обучения.
Координация этих усилий является естественным продолжением первоначальной миссии ONC по оцифровке данных о состоянии здоровья страны, сказал Рукер.
“Исторически ONC активно участвовала в создании электронных медицинских данных”, — сказал он. “Без цифровых данных ничего бы не произошло. Мы в значительной степени достигли этой цели, поэтому теперь мы смотрим в будущее”.
“Мы используем термин “большие данные” (big data) сейчас, потому что у нас много различных систем, генерирующих множество различных типов информации. Но большинство из них изолированы, и их трудно получить”.
Разрозненный характер данных просто не годятся для разработчиков ИИ, которые хотят создать продукты и услуги будущего, продолжил он.
“Когда вы говорите об использовании данных для создания аналитических алгоритмов или обучения моделей машинного обучения, вы будете искать данные, которые помогут вам определить закономерности — различия между группами пациентов, лечением или обращением. Для этого вам нужно больше, чем просто данные из одной больницы. Вы должны смотреть по всем медицинским организациям”. Именно в решении этой проблемы особое значение играют открытые API.
“Наша роль заключается в том, чтобы поддерживать связи между разрозненными субъектами и их данными, не забывая, конечно, о конфиденциальности и безопасности”, — сказал Рукер. “Интерфейсы прикладного программирования являются ключевой частью этого”.
API действуют как мосты между приложениями или системами, которые в противном случае не могут найти «общий язык». API позволяют приложениям запрашивать доступ к данным, хранящим в другом месте, что облегчает инженерам и ученым создание инструментов, которые используют существующие ресурсы, не перестраивая все с нуля.
“Без открытых API эффективного машинного обучения просто не будет”, — заявил он. “Это потому, что ИИ похож на сжигание бензина в очень неэффективном двигателе. Вам нужно много данных, чтобы прийти хотя бы к какому-нибудь заключению. API будут иметь решающее значение для предоставления разработчикам доступа к достаточному количеству данных для обучения и тестирования реальных моделей”.
Однако это не означает, что API вдруг должны предоставлять данные бесплатно для всех, добавил он. “Я хочу ясно заявить, что API — это не просто открытая дверь, чтобы делать все, что вы хотите, с данными”, — подчеркнул Рукер.
Конфиденциальность и безопасность — это не единственные проблемы, с которыми сталкиваются разработчики искусственного интеллекта, которые хотят воспользоваться преимуществами API.
В настоящее время API, ориентированные на здравоохранение, позволяют приложениям использовать данные только на индивидуальном уровне, пояснил Рукер.
“Переговоры о совместимости и доступе к данным пациентов, которые мы проводили на федеральном уровне, были в основном сосредоточены вокруг предоставления человеку доступа к его личной информации о здоровье. API, которые у нас есть сейчас, могут поддержать это, что очень, очень важно для потребительского здравоохранения, которое мы все хотим видеть”.
“Но в настоящее время нет API, который будет выступать как пожарный шланг для данных на уровне населения”, — сказал он. “Это действительно недостающее звено для получения больших объемов анонимных, нормализованных данных, которые нам нужны для ИИ. Без этой возможности ИИ будет ничем в здравоохранении”.
К счастью, заинтересованные стороны уже напряженно работают над новым поколением API, которые предназначены для совместного использования данных в масштабе.
“Мы должны быть в состоянии сделать это быстро. Если мы не можем найти способ использовать API в полной мере, тогда ИИ просто не будет введен в практическое здравоохранение”.
По материалам https://healthitanalytics.com/news/rucker-without-apis-artificial-intelligence-will-fail-in-healthcare